By Bayes' rule we have,
$$ P( \theta | D ) = \frac{ P ( D | \theta) P ( \theta )}{ P( D )} $$
This is called the posterior distribution of $ \theta $
$$ \theta_{MAP} = arg max_{\theta} P(\theta | D) $$
$$ \theta_{MLE} = arg max_{\theta} P( D | \theta) $$
Homework (Slides)
<img src="./files/dis_dis.png" width = 80%/>
What is the MAP here?
What is the MLE here?
Let $ X \sim Beta(\alpha, \beta). $
Then $$ P[X=x] = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1} \Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} $$
where $$ \Gamma(x) = \int_{0}^{∞} t^{x-1} e^{-t} dt $$
Remember $ \Gamma(n) = (n - 1) ! $ for natural number n
Check distribution shape
$ Beta(1, 1) $
$ Beta (2, 1) $
$ Beta (5, 1) $
$ Beta(10, 1) $
$ Beta(0.5, 0.5) $
Prior: $ Beta(\alpha, \beta) $
Observed data: s heads, t tails
Find the posterior.
Find the MAP estimate of $ \theta $
Why Beta distribution? Conjugate priors